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Stability of systems with random parametric excitation was investigated by several workers.
The cases when the stability towards white-noise excitation was investigated were the
most successfull ones, since the methods of the theory of Markov processes {see eg. [1 to
4] e.a.) could be utilised. Investigation of stability under nonwhite excitation is much
harder, and this is the reason why most authors limited their investigations to either linear
{5 to 7] or nonlinear systems of some particular type [7]. n (8] we find the stability criteria
for an arbitrary nonlinear system with excitations of any type, but this criterion is effect-
ive only in the cases when the solution is a Markov process.

Authors of [8 and 9] introduced the use of Liapunov function in problems of stability
under random excitation. We shall however atilise that aspect of the Liapunov method,
which was first used for similar purposes by the authors of [10 and 7].

1. We shall consider the system described by the following differential equation in
vector form

dx / dt = G (z, t, & (1) (1.1)

Here x and G are vectors belonging to the [-dimensional Euclidean space Ej, while
f(t) is a random process which can assume values from the Euclidean space Eis'

We can assume without any loss of generality that G (0, £, § (£)) = O and consider
the problem of stability of the trivial solution z (¢) = 0. Following [9, 3 and 11], we
shall introduce some definitions. We shall call the trivial solution of (1.1):

1°. Almost surely stable, if, for any &€ > 0 and 8 <0 such r can be found, that
P{lz(t, xy, ty)| >e}<d whent >l || <7 (1.2)

2° Almost surely asymptotically stable if it is almost surely stable and, if for any
g >0 suchr=r (S) can be found, that

P{lz(t, 2o, to) | > €} —0 when t— o0, 2|7
3° p-stable, if for any &> 0 such r> 0 can be found, that

Clz(t, 2o, to) |7 ) <& when 124, 2| <r (p>0)

Here and in the following the <> parentheses will denote a probabilistic mean
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{mathematical expectation).

4% Asymptotically p-stable if it is p-stable and
Cla(ty zgy td P> —> 0 as f—oo

5° Almost surely stable in the large if it is almost surely stable and, if also for any
Zy, &, and 8, T = T (z,, &,0) can be found such, that when ¢t > T, then (1.2) is true.
Asymptotic and ‘p-stability in the large, are defined analogously.

6°. Exponentially p-stable if it is p-stable and if also constant 4 > 0 and @ > 0 exist
such, that

Hz(t, xo, ) Py<<A | %,|" exp {—a (¢ — t)}

7°, Stable with probability one in some sense or other, if all trajectories except perhaps
a set of trajectories with probability zero, are stable in the corresponding sense.

Remark. In [7], another definition is used. There the system is asymptotically stable

with probebility one, if for all initial conditions z (f)) = =z,
P (lim = (¢, o, tg)=0} =1 (1.3)
t-—>o00

For the linear selfsimilar systems and steady processes & (1), this definition is
apparently equivalent to the definition found in [7]. It cannot however be used in the
general case for two reasons. Firstly, examples exist of nonlinear determinate systems
which satisfy the condition (1.3) but which, nevertheless, are not Liapunov stable in the
classical sense, secondly, examples are easily found of linear systems, excitedby a
nonsteady random process, for which condition (1.3) is fulfilled, but for which, nevertheless,
every trajectory is unstable with probability one.

Unless some initial restrictions are imposed on the system, we must not expect
to obtain nontrivial and effective conditions of stability. In this paper we shall investi-
gate conditions of stability of systems of the type

& P s DED,  (FO0=0 (0 H=0) (1.0

Here o is a & X | matrix, x and FE E;, and & (t) € E;. Following the example of
[7 and 10}, we shall give the sufficient conditions of stability in terms of the existence
of the Liapunov function of the reduced system

dz /dt =F (z,1) (1.5)

With reference to all Liapunov fanctions V (x, t) which will be encountered in this
paper, we assume that they satisfy the Lifschitz condition in x

[V (2, t) —V (2, )| < L|zy — 2] (1.6)
in every bounded region, If L is independent of the region, i.e.

[V(gs, ) —V(m, V)|

| %2 — 1]

supy, ¢ =L<co

then we shall use the notation V&= C (L). We shall also adopt the notation

toi= (2 2 og)"

2. As we know, the process £ (1) satisfies the law of large numbers, if for any
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e >0and 8> 0, T> 0 can be found such, that

t t
Pl 7fe@as—1cee yds| >0} <& when >7
8 5
If, on the other hand,
t

¢
P{-i—sg(s)ds-—-%' (E(s)>ds—>0 when i oo}:l
0 ¢

then the process £ (t) satisfies a more rigorous law of large numbers,

Sufficiently wide conditions of applicability of the law of large numbers to random
processes, are given in [12]. The fact that more rigorous law of large numbers can be
utilised to establish the stability of a system with probability one was first mentioned in
5] Development of this idea is found in [7]. We shall show, that the law of large numbers
in its weak form leads, under additional conditions, to the almost sure stability.

Theorem 2.1. Let us assume, that a Liapunov function Ve= C (L), exists for the
system (1.5), satisfying the conditions {c; > 0 are coustant)

infis,, jx[>r Viz, )=V, >0 when >0 2.n
°V
Eglf‘” <—aV, Jo(z, 1) “{:021/ (2.2)

Here and in the following
d&V{r, t)

(58 o Tim V@t + by 2, 0), £+ B)—V (2, )]

0
is the derivative of ¥ by virtue of the system (1.5}.

Then, the trivial solution of the system (1.4) is almost surely asymptotically stable
in the large for any process £ (#), for whick

supr»o <1 () > <C fi’; (2.3)

and provided that the process |£ (¢)] satisfies the law of large numbers. If, on the other
hand, the process |£ ()| satisfies the sharper law of large numbers, then the same condi~
tions secure the asymptotic stability in the large of the solution x = 0, with probability
one.

Proof. Let x° (1) be the solution of Equation {1.4), satisfying the initial condition
z°{0) = z,. Then, accounting for the conditions of the theorem, we easily obtain

dav (z° (1), t) _d°V (2 (1), 1)
dat < dt

4 L E@ VSV (—e+ Lea | E(1) )

from which the inequality

t
5 1 (ST
V(x® (1), ) < V (2, 0) exp {cht <7 S [E(s)] ds — Lz’z )} (2.4
o
follows. Let now make € > 0 and 8 > 0 arbitrary. Using {2.3) together with the fact that the
proceas £ (¢) satisfies the law of large numbers, we shall choose T > 0 such, that when
t > T, then the inequality
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{ 5ii<9)zcis> }<s (2.5)
is fulfilled. Now, letus choose a number M > 1 large enough to ensure that
T
P -{L«': Vlz@ids>m M}< e (2.6)

9
Firally, let us choose r small enough to ensure that
V(g OO M Vy for [ ap) < r 2.7

From (2.4) to (2.7) we obtain, considering the cases t < T and ¢ > T separately, that
for | %] <r and all ¢ >0,

Pllz(|> 8 <P{V(z(), 0>V} <e

This, together with ¢

P{%Sl&(s)[ds>—£—lc—2}—ao npH £ — oo
1]

proves the first assertion of the theorem. Second part is proved analogously.
Theorem 2.2. Let a Liapunoy function V (x, ) = C (L), exist, for which the rela-
tions (3.1) and {2.2) hold together with the inequality (for some ¢ > 0)
V(z,t) >eclz| (2.8)

for the system (1.4}, and let the process f(t) be such, that for some positive constants &,
and &, and all £> ¢,

L.

Cexp iy § [8(5) s} > < exp thes (¢ — o)} 2.9)

0

where the constants ki’ ¢; and L, are connected by
Ly, < kyey (2.10)
Then, the solution () = O of the system (1.4) is p-stable, whea p < %, / (Lc,).

o,

If, on the other hand, a stronger inequality
Lk, < ke, (2.11)

holds, then for the same p, the solution is exponentially p-stable. Proof of this theorem
is based on the previously obtained inequality (2.4). Raising its both parts to the power
ky/Lc, and evaluating the mathematical expectations, we obtain, taking (2.8) into account,

kl/LCz/]x(t>?\/Lca> <th t)]k./LCz><
¢

<[V (0, to)}/ L°2<exp {kl Q |E(s) [ds — T aaky T (t— 50)}> (2.12)

.
@

which, together with the relations {2.9) to (2.11), yields the proof of our theorem.

3. Since in real systems random perturbations result from a large number of factors,
each of them exerting little influence, it is natural to assume that the process & (¢) in (1.4)
is Gaussian. We know [12], that such a process is uniquely characterised by its vector
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of mathematical expectation m () == {§(f)) and a convariant matrix

K (s, 8) = cov (§(s), §E (1) = (KI& (9 — mi (5)] [&; () — m; ()])))
Stability of linear systems under Gaussian parameter variation was investigated in
[13 and 6]. In[6] the analysis was based on the estimate of the type {2.9) established
for a Gaussian steady process satisfying the condition of ‘mixing’ sufficiently strongly.
It was found, that the conditions under which the above estimate was valid, could be re-
laxed and simplified. We can say more precisely, that, when the conditions
&
EOYI<an  JEO—m@OBH<en (K@ wlds<a 6D
f
are fulfilled for the Gaussian process for any ¢, ¢, and t,, then the inequality
i
. — .k
Cexp {18 1ds)> < oxp fha (a0 + Var + 202 )y — ) O

to

is valid. This, together with the theorem 2.2 infers, that the system (1.4) is exponentially
p-stable for sufficiently small p, provided it has a Liapunov function V (z, £) & C (L),
satisfying (2.1), (2.2) and (2.8), and that & (¢) is a Gaussian process for which, for snffi-
ciently small g, and a,, conditions {3.1) hold.

Let us now apply the theorems proved in section 2, to linear systems of the type
d
71% =AM +n@) = (3.3)

where the elements of a square matrix 7 (¢} are random processes, and the system under
investigation
dr

w=AMz (3.4
is exponentially stable.

By the Malkin theorem {[14], p. 313), the exponential stability of (3.4) implies that a
positive definite quadratic form (C (1), z, ) = W (¢, z), exists for the system, for
which

W
dt

<—Alep (>0

System (3.3) must be written in the form (1.4), before the theorem 2.1 can be applied
to it. This is easily done by substituting an 2 ] matrix
21 1‘2"'1:'[00"’00"*0
6 «-. 0 2 06 .-+ 2 0 ... 0
sz, t) =

i¢o 0 -0 0 0 .- 06 0 -- 0 2 22 - wy

for o (x, ¢}, and
Nix (8) = E-nyrs (¢) where (§(f)  is a vector from E

Considering the Liapunov function V (z, t) = (W (z, 1)): and applying Theorem
2.1, we obtain.
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Theorem 3.1. Let the system (3.4) be exponentially stable. Then, the system (3.3} is
almost surely asymptotically stable for any (matrix) random process 7 (¢) such, that the
process || (¢) || satisfies the law of large numbers and |l (£)]> < ¢, where c is a
sufficiently small constant. If, on the other hand, the process || 7 (¢) || satisfies the
sharper law of large numbers, then the same conditions secure the asymptotic stability of
(3.3) in the large with probability one.

Next we shall consider the conditions of p-stability of the linear system (3.3), and
we shall limit ourselves to the case where A is a constant stability matrix (i.e.

Re A, <0), A; are the eigenvalues of 4 and 7 (¢) is a Gaussian random process. We shall
first consider the case when the equation is given in E,.

Example. Let the equation
T =(a+n()e, z (0) = xo (3.5)

be given in E,. Here 7) (¢) is a Gaussian steady process with <7 () > =0 and
Kt —5)={n (s)y (1)) is a correlation function. The fact that the integral of a Gaussian
process alsu possesses a Gaussian probability distribution, infers that

(3.6)

it
(Iz(l)l">=Ixol”<eXP{apt+ptSn(S) as) > =1z explapt + B (e u— 9y auas}
0 00

If the function K (u) is integrable absolutely, then weknow [12] that the process
£ko) has a bounded apectral density f (), and
¢

S

SK(u—s)duds:f(O)t+o(t) (3.7)
0

from which, together with (3.6) it follows, that the solution x (¢) =0 of (3.5) is asymptotic-
ally p~stable when p < — 2a/ f (0), provided a <0. When a > 0, the insability of the
solution follows from its explicit form. If 6 =0, then the solation x (t) =0 will be unstable
if, for example, f(0) # 0. Indeed in this case (3.7) implies that

tSK(u—s) du ds = <[tg E(s)ds|" p oo ms 1o oo (3.8)
0 1]

D () =

SO

and
¢
P{OS E(s)ds > VD (D} =1— D (1) (3.9

Here ® (x) is a distribation function of a normal law, with parameters 0 and 1. From
(3.8) and (3.9), the instability of the trivial solution in this case, follows.

Next we shall consider the case of Z¢< E,. If 4 is a stability matrix, then [14)
there exist a symmetric, positive definite matrix C, such that the matrix C4 + A*C is
negative definite. Let us denote by A the largest positive number for which,

" —‘g%—i (CA |- A*CYz, 2) < — A (Cz, 1) (3.10)

for all .« = FE} . The following estimate for A is easily obtained:
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A> — }‘fdmax / Anax > 0, where ,\:mx and )\I‘fnax are the largest eigenvalues of the
matrices C and D = CA + A*C respectively.

Theorem 3.2. Let A be an [ x ! stability matrix, C a positive definite matrix, satis-
fying the condition (3.8) and let 7 () = ({5 ;i 04, j=1, ...,  be a Gaussian random
process. We assume that for the process n° (1) = Cl/,n ) C-% conditions

i

K@ | <ao N O—FE P <an,  \JK (s u)|ds<a

4]

where K (s, t) = cov (1°(s), m° (¢)) is an I? x I? matrix, are satisfied.
Then, the trivial solution of (3.3) is asymptotically p-stable for‘
p<I[IN—2(a -+ Vap)l/2,ifA>2(a, + Va,).
Proof. By (3.8), we have for the Liapunov function ¥ () = (Cx, »)

dV (z (1))

T < — W (0 00z, ) SV (— A2 @)) (3.11)

Here we have used the estimate
(Cnz, 2) = (CTe™hC" 2, C'ha) S| CHnC~ 2| Chalp < jme| (€2, 2)

hence
t

V@O IV @) exp {— bt + 2p { 7 (5)]s)
0
From this, computing the mathematical expectation and using the estimate (3.2),
we obtain

IV (2 ()P <IV (20)IP exp {pt (— A + 2a,+ 2 Vay + pay)) (3.12)
from which the proof follows directly.

Note 3.1. We can see from the example that in the one-dimensional case, fulfilment
of the condition (3.10) secures the stability of the system for any e, = sup (|9 (¢)| 2>,
provided a, = 0. It can easily be illustrated, that in the multidimensional case the above
statement is usually not true; noise of sufficient intensity can nullify the stability.

3.2. Our example shows also, that an unstable one-dimensional system remains un-
stable under the action of Gaussian noise with the zero mean. It can be shown, that this
property is also not transferable to the multidimensional case, i.e. multidimensional
unstable systems can be stabilised by means of Gaussian noise. (The last statement can
be found in [13], but, as noted in [4], its proof is incorrect).
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