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Stability of systems with random parametric excitation WBS investigated by several workers. 

The casea when the stability towards white-noise excitation was investigated were the 

most successful1 ones, since the methods of the theory of Markov processes (see eg. [l to 

4] e.a.1 could he utilised. Investigation of stability under nonwhite excitation is muck 

harder, and this is the reason why most authors limited their investigations to either linear 

[.5 to 71 or nonlinear systems of some particular type [i’]. In [8] we find the stability criteria 

for an arbitrary nonlinear system with excitations of any type, but this criterion is effect- 

ive only in the cases when the solution is a Markov process. 

Authors of [8 and 91 introduced the use of Liapunov iirnction in problems of stability 

under random excitation. We shall however ntilise that aspect of the Liapnnov method, 

which was first used for similar purposes by the authors of [lo and 71. 

1. We shall consider the system described by the following differential equation in 

vector form 

dr / dt = G (2, t, E (t)) (1.1) 

Here x and G are vectors belonging to the Z-dimensional Euclidean space Et* while 

(S(t) is a random process which can assume values from the Eaclidenn space Ek. 

We can assume without any loss of generality that G (0, t, E (t)) E 0 and consider 

the problem of stability of the trivial solution z (t) ZE 0. Following 19, 3 and II], we 

shall introduce some definitions. We shall call the trivial solution of (1.1): 

to. Almost surely stable, if, for any E > 0 and 6 < 0 such T can be found, that 

P (1 2 (6 %I, t,)I>~}<d when t>to. Isl<r (1.21 

29 Almost surely asymptotically stable if it is almost surely stable and, if for any 

t: > 0 such r = r (E) can be found, that 

P{jz(t, x0, to)j>~}-+O when t--t@, lzol<~ 

So. p-stable, if for any t? > 0 such r > 0 can be found, that 

(\z(t, ze, to) jP)<& when t>to, Izol<r (P>O) 

Here and in the following the <> parentheses will denote a probabilistic mean 
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(mathematical expectation). 

4q Asymptotically p-stable if it is p-stable and 

< I 2 (6 zO, to) lp ) 4 0 a* t-*m 

So. Almost surely stable in the large if it is almost surely stable and, if aleo for any 

4, E, and 6, T = T (x0, E,6) can be found such, that when t > T, then (1.2) is true. 

Asymptotic audp-stability in the large, are defined analogously. 

6’. Exponentially p-stable if it is p-stable and if also con&ant A > 0 and u > 0 exist 
such, that 

( 1 z (t, x0, to) Jp ),<A I x0 Ip exp {- a ( t - to)} 

7’. Stable with probability one in some Sense or other, if all trajectories except perhaps 

a set of trajectories with probability zero, are stable in the corresponding sense. 

Remark. In [?I, another definition is used. There the system is asymptotically stable 

with probebility one, if for all initial conditions z (to) = ;zO 

P (iicz(l, x0, to)=O} =I 
-+ (1.3) 

For the linear selfsimilar systems and steady processes t(t), this definition is 
apparently equivalent to the definition found in 171. It cannot however be used in the 
general case for two reasons. Firstly, examples exist of nonlinear determinate systems 
which satisfy the condition (1.3) but which, nevertheless, are not Liapnnov stable in the 
classical sense, secondly, examples are easily found of linear systems, excited by 8 
nonsteady random process, for which condition (1.3) is fulfilled, but for which, nevertheless, 
every trajectory is nnstable with probability one. 

Unless some initial restrictions 8re imposed on the system, we must not expect 
to obtain nontrivial and effective conditions of stability. In this paper we shall iuvesti- 
gate conditions of stability of systems of the type 

$=F(,, t)-ta(c t)E(t), (F (0, t) zz 0; Q (0, t) E o) (1.4) 

Here o is 8 k X $ matrix, x and FE El, and t (t) CZ Ek. Following the example of 
f7 and IO], we shall give the sufficient conditions of stability in terms of the existence 
of the Liapunov fnnction of the reduced system 

dx I dt = P (x, t) (1.5) 

With reference to 811 Liapnnov fnnctione V (x, t) which will be encountered in this 

paper, we assume that they satisfy the Lifschitz condition in x 

IV (% 0 - v (3, 0 I < L 1% - $1 I 
in every bounded region. If L is independent of the region, i.e. 

(1.6) 

then we shall use the notation VCJZ c (L). We shall also adopt the notation 

2. As we know, the process t(t) satisfies the law of large numbers, if for any 
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8 > 0 and 6 > 0, T > 0 can be found such, that 

P 11 s .( 5(S)dS-+-~(S(S))dS/> 8} <e when t>* 
0 0 

If, on the other hand, 

t 

(E(s))&-+0 when t-30 =l 

0 

then the procees t(r) satisfies a more rigorous law of large numbers. 

Sufficiently wide conditions of applicability of the law of large numbers to random 

processes, are. given in [12]. The fact that more rigorous law of large numbers can be 

atilised to establish the stability of a system with probability one was first mentioned in 

[s]. Development of this idea is found in [7]. We shall show, that the law of large numbers 

in its weak form Ieads, under additional conditions, to the almost sure stability. 

Theorem 2.1. Let us assume, that a Liapunov function VE G (L), exists for the 

system (1.51, satisfying the conditions (ci > 0 are constant) 

(2.1) 

(2.2) 

Here andin the following 

dV(s, t) 

C-It 
= izu + [V (z(t + I&, I, t), t -{- h) - V (X, t)] 

is the derivative of V by virtue of the system (1.5). 

Then, the trivial solution of the system (1.4) is almost surely asymptotically stable 

in the large for any process e(t), for which 

supt>o ( I E (t) I> <I & (2.3) 

and provided that the process I[ (t)I 

LQ I S(i) 1) 

from which the inequality 

vc~~cl,,I,cv~~~,0~FIP{lre21(~~,Z(I~,IIS-~~} (2.4) 

0 

foIIows. Let now make E > 0 and s> 0 arbitrary. Using (2.3) together with the fact that the 

process t(t) satisfies the law of large numbers, we shall choose T > 0 such, that when 

t >, T, then the inequality 
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Lz.5) 

is fulfilled. Now, let us choose a number ‘II > 1 large enough to ensure that 

Finally, let us choose r small eniugh to ensure that 

v fro, 0) M <V, for i x0 I < r (2.7) 

From (2.4) to (2.7) we obtain, considering the cases t < T and 1 >/T separately, that 

for~~,~<randallt>O, 

This, together with 

npa t --f M 

proves the first assertion of the theorem. Second part is proved analogously. 

Theorem 2.2. Let a Liapunov fnnction v (t, t) E c (A), exist, for which the rela- 

tions (3.1) and (2.2) hold together with the inequality (for some c > 0) 

V (2, t) > c I 5 I (2.8) 

for the system (I.4), and Iet the process E(Z) be such, that for some positive constants k, 

and 4 and all 6 > to 

(2.9) 

where the Cmstauts ki, ci and L, are connected by 

L&c, < k,c, (2.10) 

Then, the solution z (t) c 0 of the system (1.4) is p-stable, when p < k, / (Lc,). 

If, on the other hand, a stronger inequality 

-%rc, < k,c, (2.11) 

holds, then for the same p, the solution is exponentially p-stable. Proof of this theorem 

is based on the previonsIy obtained inequality (2.4). Raising its both parts to the power 

kl/Lca and evaluating the mathematical expectations, we obtain, taking (2.8) into account, 

which, together with the relations (2.9) to (2.111, yields the proof of our theorem. 

3. Since in real systems random perturbations result from a large number of factors, 
each of them exerting little influence, it is natural to assume that the process 5 (t) in (1.4) 

is Gaussian. We know [12], that such a process is uniquely characterised by its vector 
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of mathematical expectation m (t) == <g(t)) and a convariant matrix 

K (s, t) = cov (6 (s), E (t)) = (((I!& (s) - mi ($1 IEi (t) - m; ft)]))) 
Stability of linear systems under Gaussian parameter variation wss investigated in 

[I3 and 61. In f6] the analysis was based on the estimate of the type (2.9) established 

for a Gaussian steady process satisfying the condition of ‘mixing’ sufficiently strongly. 

It was found, that the conditions under which the above estimate was valid, could be re- 

laxed and simplified. We can say more precisely, that, when the conditions 

t1 

i G (Q> I f a,, (I g tt1 -m (t) 1”) < aI, SI I ~(s, @I/~6 % (3.1) 

4 
are fulfilled for the Gaussian process for any t, ta and tl, then the inequality 

(eXP {kl f 1 E 6s) 1 ds}) d exp {kl (a0 4 ti<+ F) (tl - to)} 
i0 

(3.2) 

is valid. This, together with the theorem 2.2 infers, that the system (1.4) is exponentialIy 

p-stable for sufficiently small p, provided it has a Liapunov fnnction v (2, t) e C (A), 
satisfying IZ.i), (2.2) and (2.81, and that t(t) is a Gaussian procssa for which, for snffi- 

ciently small a, and a,, conditions (3.1) hold. 

Let us now apply the theorems proved in section 2, to linear systems of the type 

(3.3) 

where the elements of a sqnare matrix ~1 (t) are random processes, and the system under 

investigation 

dx 
dt = A (t) 5 (3.4) 

is exponentially stabIe, 

By the Melkin theorem ([14], p. 3131, the exponential stability of (3.4) implies that a 

positive definite quadratic form (c (t), X, z) = W (t, z), exists for the system, for 
which 

System (3.3) must be written in the form f1.4), before the theorem 2.1 can be applied 

to it. This is easily done by substituting an -1s x i matrix 

x1 q - * * “1 0 0 . * * 0 0 - * * 0 0 0 --a 0 

c5 (q t) = 
0 0 ‘.. 0 51 0 *.- XI 0 If. 0 0 0 *.. ,o 

*. . .I.. . . . . . . . . . . 1 .*.. . . . . . .e.*. . 

io 0 *.. # 0 0 . . . 0 0 -.* 0 31 22 *-- 51 

foro (n, t). and 

%k (t) = ~(i--1)&k (t) where (f (t) is a vector from El2 

Considering the Liapunov function V (2, t) = (w (5, ~))‘/y and applying Theorem 

2.1, we obtain, 
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Theorem 3.1. Let the system (3.4) b e exponentially stable. Then, the system (3.3) is 

almost surely asymptotically stable for any (matrix) random process 77 (t) such, that the 

process 11~ (t) 11 satisfies the law of large numbers and ([Ill (t)l/> < C, where o is a 

sufficiently small constant. If, on the other hand, the process ]I 7,~ (t) (1 satisfies the 

sharper law of large numbers, then the same conditions secure the asymptotic stability of 

(3.3) in the large with probability one. 

Next we shall consider the conditions of p-stability of the linear system (3.3), and 

we shall limit ourselves to the case where A is a constant stability matrix (i.e. 

Re hi <O), 4 are the eigenvalues of A and 7 (t) is a Gaussian random process. We shall 

first consider the case when the equation is given in Et. 

Example. Let the equation 

dx -_ 
dt - (a + 11 (t)) x, x(0)=x0 (3.5) 

be given in E,. Here I) (t) is a Gaussian steady process with < rl (t) > = 0 and 

K (t - s) = (R (s)q (t)) is a correlation function. The fact that the integral of a Gaussian 

process also possesses a Gaussian probability distribution, infers that 

(3.6) 

t t 

<Ix(t)IP)=lyIP<exp(apt+plS q(s)ds})=IzoIPexp{apt+ gSSK(u--s)duds} 
0 00 

If the function K (u) is integrable absolutely, then weknow [12] that the process 

[kt) has a bounded spectral density f (A), and 
t t 

ss 
K(u-s)duds-f(O)t+o(t) (3.7) 

0 0 
from which, together with (3.6) it follows, that the solution z (t) m 0 of (3.5) is asymptotic- 

ally p-stable when p < - 2a / f (0), p rovided a < 0. When a > 0, the insability of the 

solution follows from ite explicit form. If a = 0, then the solution z (t) s 0 will be unstable 

if, for example, f(0) f 0. Indeed in this case (3.7) implies that 

D(t)=C \K(a-s)dads=<[S,is)ds]‘>-w as t--, 00 

CT.0 

and 

‘i$ c(s)ds> vD(t))=i-‘D(1) 

(3.8) 

(3.9) 

Here @ (z) is a distribution function of a normal law, with parameters 0 and 1. From 

(3.8) and (3.9), the instability of the trivial solution in this case, follows. 

Next we shall consider the case of XE El. If A is a stability matrix, then [14] 

there exist a symmetric, positive definite matrix C, such that the matrix CA + A*C is 

negative definite. Let us denote by h the largest positive number for which, 

(3.10) 

for all .c’ cF Er . The following estimate for A is easily obtained : 



1088 R.Z. Khas’minskii 

h> - I.&,, I h”,,, > 0, where X,ff_ ad Xf,, are the largest eigenvalues of the 

matrices C and D = CA + A+C respectively. 

Theorem 3.2. Let A be an 1 x 1 stability matrix, C a positive definite matrix, satis- 

fying the condition (3.8) and let 7 (t) = ((vii (t)), i, i = 1, . . . . 1 be a Gaussian random 

process. We assume that for the process r” (q = c’:,~ ct) c-t/Z , conditions 

where K (S, t) = COV (7' (s), q" (t)) is an la x 1 1 matrix, are satisfied. 

Then, the trivial solution of (3.3) is asymptotically p-stable for 1 

P < [A - 2 (a, + JGJI / 2, if I+ > 2 (a, + -r/‘G). 

Proof. By (3.8). we have for the Liapunov fnnction V (z) = (Cx, x) 

dV (z(t)) 
dt 6 - hV + ((Cq + rl*C) 2, 4 < V (-- h + 2 II r1° (t) II) 

Here we have used the estimate 

(3.11) 

hence 

From this, computing the mathematical expectation and using the estimate (3.2), 

we obtain 

C IV (5 (t))lP) f IV (so)lp exp {pt (-- h + 2~ + 2 I/G + ~41 

from which the proof follows directly. 

(3.12) 

Note 3.1. We can see from the example that in the one-dimensional case, fulfilment 

of the condition (3.10) secures the stability of the system for any a, = sup ( 1 q (t) 1 2), 
provided a,, = 0. It can easily be illustrated, that in the multidimensional case the above 

statement is usually not true ; noise of sufficient intensity can nullify the stability. 

3.2. Our example shows also, that an unstable onedimensional system remains un- 

stable under the action of Gaussian noise with the zero mean. It can be shown, that this 

property is also not transferable to the multidimensional case, i.e. multidimensional 

unstable systems can be stabilised by means of Gaussian noise. (The last statement can 

be found in [13], but, as noted in [4], its proof is incorrect). 
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